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The authors consider the problem of a symmetrically loaded nemi-infinite strip clamped 

along the short edge. An integral equation is derived for the normal stress at the clamp 

and the nature of the singularities of its solution is investigated. A detailed study is made 

of the case when normal and tangential forces act on a longitudinal edge. For such loading 

the nature of the stress distribution at the clamp is investigated in detail. Numerical 

calculations are given for the case when the strip is compressed by two point forces. 

In many works dealing with semi-infinite strips, wide use is made of methods based 

on the principle of localization. In this way a satisfactory solution is obtained a long way 

from singular points such as: 1. points at which the nature of the boundary conditions 

changes ; 2. points at which the loading becomes discontinuous ; 3. corner points. By these 

methods the singularities of the solution which occur in the aforementioned cases and 

reduce its accuracy, are excluded from it. 

Horvay [l to 31 h as studied the problem of a semi-infinite strip with free longitudinal 

edges and with self-equilibrated loads acting at the end. He selects a stress function in 

the form 

9 (2, y) = 2 C,f, (Y) gl, (‘1 

where a complete system of orthogonal polynomials is used for fk (y) and the multipliers 

gk (2) are determined from the condition of minimum potential energy. 

Koiter and Alblas [4] h ave studied the problem of the extension of a semi-infinite 

strip with free longitudinal edges and with a clamped short edge. By applying a Fourier 

sine transformation to the equation for the stress function they, as all subsequent authors, 

reduced the solution of the problem approximately to an infinite system of linear algebraic 

equations. 

In papers by Pickett and Jyengar ([S and 61 1956, 1962) the stress functions are sought 
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in the form of combinations of Fourier series and integrals. 

la 1988 Zorski [7] solved the problem for a plate in the form of a semi-infinite strip. 

By neekfng a solution in the form of combinations of solutions of two potentials he reduced 

the problem to a singular integral equation. 

In a paper by Theocaris ([S], 1959) dealing with the problem of a eemfinfinite strip 

with free longitudinal edges and with a concentrated force acting on the end, an energy 

method was used. 

Tsodorescu (cs], 1960) suggested the method resembling that of Pickett and Jyangar for 

the sohrtion of the problem of a semi-infinite strip. 

A variational method was used by Trapeznikov ([lo], 1963) for the solution of the 

problem of a semi-infinite strip compressed by two concentrated forces; the short side of 

the strip was stress free. 

Gaydon and Shepherd (1111, 1964) studied Horvay’s problem by means of the method of 

homogeneous solutions. Since the homogeneous solutions were not orthogonal, in order to 

satisfy the conditions at the end, they were expanded into series of orthogonal functions. 

Homogeneous solutions have also been used by Bnchwald ([12], 1964). 

AI1 of the aforementioned authors ignored the singularities of the solution and for this 

reason the linear systems to which the problem was reduced were often inexact. 

The paper by Benthem (1131, 19631, h’ h w rc so ves the problem of a semi-infinite strip 1 

as stated by Koiter and Alblas, is free of this shortcoming. By applying Laplace trans- 

forms to the equation for the stress function Benthem reduced the problem to a system of 

linear algebraic equations. He established the nature of the singularity of the solution on 

the basis of corresponding problems for a quarter plane studied earlier by Williams (214 

and IS], 1952 and 1956). computation of the singularity givan in the present paper assumes 

a form different from that of Benthem [13], with resu_!;ing improvement in the accuracy of the 

solution. It should also be noted that the proyiem studied here has not been studied in the 

works listed above. 

1. Consider the s:‘,metricaI problem for a semi-infinite strip with the following bound- 
ary conditions (pig. 1) : 

FIG. I. 

~=8=0, z =o (1.1) 

%I =g(z), zxzgl =r(z)sgny, y = +1(1.2) 

Here u and v are the displacements along the axes of 

x1 and y1 respectively; +xxlVMr, and C& are the tangential 

and normal stresses. 

In order to derive the integral equation for the problem 

we make ,nse of the fundamental relations of the plane 
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theory of elasticity in terms of displacements 

vg+au=o, ~+_qe+2~, T$2+g(13) 

v;;+r\v=o, 3g = (4)e+s~, 1 - 
T = I-25 

Here o is Poisson’s ratio and G is the shear modulus. Let the boundary conditions be 

given by (1.1) and (1.2) and let us represent u and v as the sum of the solutions of two 

auxiliary problems : 

(1) The problem for a semi-infinite plane with a boundary along the y-axis and with 

the boundary conditions 

x =o, 2, (Y) = 0, ax, (Y> = (3 (Y)t IYl < o0 (1.4) 

(2) The problem for a strip with boundary conditions 

x =o, 2, (Y) = 0, cc, (Y> = 0 I Y I < 1 (1.5) 

Y = +1, % = m (4, ‘crll/, = + n (4 (1.6) 

Here m and n are such that for the general problem boundary conditions (1.2) hold. It 

is easily seen that the solution of (1) is given by the formulas 

Here C~ is an arbitrary constant. 

Solution of (2) is obtained by applying a Fourier sine transformation to the system of 

equations (1.3). Without describing the intermediate computations, we state the final 

formulas 

al 

+- (A 
s 

cash Au + BAY sinh hy) cos AX dh + cz 
0 

co 
(1.8) 

+ 
SL 

A sinh k!t + B hy cash hy 
( 

2+v sin hx dh 
0 

- y sinh hy )I 
Here A (X) and B (A) are arbitrary functions; C, is an arbitrary constant. From 

formulas (1.7) and (1.8) we can easily see that for the problem obtained by superimposing 

solutions of (1) and (2) the following boundary conditions hold : 

5 =o, 2, (Y) = 0, CT, = 0 (Y)t IYIB 1 (1.9) 

7J =1, (JII, =N (x) + 772 (4, TC,Y‘ = J4 (4 + 72 (x>, x > 0 (1.10) 
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Here N (x) and M (z) are, respectively, the normal and tangential stresses in the 

semi-infinite plane at y = 1. In order to satisfy conditions (1.2) we put 

m (2) = g (5) - fi (4 n (4 = r (x) - M (4 (1.11) 

Then 

A (h) = 9 (h cash 
i 

B (A) = _ %_I$? cash 
+ 

00 

g1= $ 
s 

g(Z) SinhXdX, 

0 

h 
sinh h v ) + p (h sfnh h - ‘$ cash 1) -- 

h, a--1 
- - sinh h, 

AA+ 

co 

A+= siuh 2h+2h, rI=j$S r(x)cosha:dz 
0 

The solution obtained by superimposing (1) and (2) satisfies all the boundary con- 

ditions except u = 0 at r = xl / h = 0. Instead of this we obtain 

‘2 I,=, = 
v-I.2 

2n (1 + v) 

h sinh X cash hy - y cash X sinh hyl - + cosb h coshhy] dh + 

0 

--(Gosh hy- cash h- 
sinh $, 
-+--W+(~+~--vhP) X 

x ih sinh j,, - _ v+l cash h dh (B=I1---ii) 
Here Ct is an arbitrary constant Which can be determined from the condition of 

equilibrium of the semi-infinite strip. 
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If we impose the condition that a = 0 at x x 0 we obtain an integral equation in terms 

of the stress (I (y) at the support. Let us put 

tJ (Y> = (J (Y) for IYldlt (J (Y) = 0 for \Yl>l 

After simple manipulations of (1.12) we obtain an integral equation of the form 

co 

s (4h - e-“) 

+ (1: v) o (e4” + 2k+2” - 1) h 
cash ht (oh - 1 - ~ht tanh ht) hy sinh hy - 

-(cash hy -I)(~_~+_ !q)]- cash xt cash he +(cosh hy - 1) x 

x(v+l- VA tanhh)+vXy sinhAy] )dh 

f (y) = - $ !$$[A (cash h cash hy - y sinh h sinh hy) - isinh X cash hy] & + 

+ $&( sinh x cash Xy - y cash h sinh Q) 

0 
- ‘+ cash x cash “$1 & 

This way we have reduced the problem to an integral equation of the first kfnd. The 

kernel of this equation has a removable singularity on the diagonal y = t and a fixed 

singularity at the points y = f 1. The fixed singularity in the kernel complicates the 

investigation of the equation as well as its numerical solution. 

2. Let us now investigate the singularity of the solution of the problem under consi- 

deration. It can easily be assumed that the nature of this singularity will be the same as 

that at the comer in the solution of the analogous problem for a quarter plane. We shall use 

the results of Williams [14 and 151, Ufliand [16] and Kurshin [17]. Later we shall use the 

paper by Benthem 1131, the essential results of which we shall briefly reproduce. 

We shall consider the caseof plane strain. Transition to a state of plane stress can be 

effected by the usual replacement of Poisson’s ratio u by a/(1 + a). We calculate the 

singularity not by using the solutions of the corresponding problem for a wedge, but by 

starting directly from the boundary-value problem only. In this we shall use a system of 

polar co-ordinates o and 8. Since near the comer ~0 = 0, Z,,B = 0 when u = 0, we have 
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aw a iaa, 
-p-= 0, ---=o, ( 1 aP P aP 

e=o 
(2.1) 

Here @ is a stress function satisfying the equation 

The boundary conditions along the clamped edge are of the form (the displacements 

being zero) 
1 a@ -I 
P 8P 

+ 
1 aa@ 0 @w --_ 

pa a02 l-_a-@-= 0 (2.3) 

Separating the variables in (2.2), we obtain 

CD = p”+‘F (s, e), F (s, 0) = Al sin (S + qe + 
+ A, cos (s + I)e +A, sin (S - I)8 + A, cos (s - l)O 

Here AI, -&, As, and ~44 are arbitrary constants. 

By satisfying the four boundary conditions (2,1), (2.2) and (2.3) we obtain a restriction 

imposed upon s, namely 

ZXCOS ns-CL? +!I +x* =o, x =3-b (2.4) 

For any values of (I within 0 < u < 0.5 , equation (2.4) has a positive root 

For u I Oe31741, so = 0*70000, and the stress in the corner when p + 0 increases like 

~“a%# (@), where 9 (8) is a bounded function. 

3. As a nnmerical method of solving the integral equation (1.13) we shall use an 

analogue of the method of Mul’toppKalandiia [I8 and 
191. This method was developed in connection with 
the approximate solution of the equation of the theory 

of a wing of finite span. We shall seek an approxi- 
mate solution to the problem in the form 

Nfl 
CJ (y) = (1 - ya)““-’ I] AkY,y” (k-1) 

k=l 

(se = 0.7OCOO for ff = 0.31741) 
(3.1) 

FIG. 2. 

Substituting Expression (3.1) in the integral 
equation (1.13) and equating the left- and right-hand 
sides at the nodal points yk selected in a definite 
manner, we obtain a system of linear algebraic 
equations in “k. As the nodes of collocation we 
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selected the roots of the Chehyshev polynomials 

2k - 1 
(k = 1, . . ., :V) (3.2) 

Here N is the number of subdivision points in the interval [0, 11. In this way the 

problem has been solved for the case of compression of a semi-infinite strip by two con- 

centrated forces P (gl = (p / G) sin AC, r, = 0, C, = Co (P / h), with the supplementary 

condition 

1 

s 
o(t)dt = 0 

(3.3) 
-1 

The integral expressions in (1.13) which contain singular kernels were evaluated by 

expressing them in terms of hypergeometric series [20], the other expressions being 

evaluated by Simpson’s rule. As a result a linear system of algebraic equations of the 

following form was obtained: 

N+I 

2 a*& = B, (k=l,...,N+~) 
i=1 

(3.4) 

Here N is the number of subdivision points in the interval [O, 11 and Bk are absolute 

terms; the values of the elements of the matrix of coefficients fi aik 11 are as follows :- 

For N=r 

;*;;z 
$933;: 
pp& 
p&6 
. 

3.609wl 
3.661710 
3.975676 

:*gg 

4h92416 
1.000660 

3.603561 

EE 
41196286 

:*E% . 

0.679665 
0.343496 

t %E 
1:360771 

XE 
0:416667 

0.637903 

%%z 
1:711400 

2s% 
0:416667 

%ifz 
1:49327a 
1.993367 
2.311127 
0.416667 

1.564301 1.250573 
1.660292 i.319984 
0.284091 0.221946 

For 

0.144033 
0.415292 

0.160760 
0.531632 
p45& 

1 AU3231 
0.284091 

For N=6 

0.!!21946 

-oo%% 
ok3429 

K%i 
1:106332 
0.164955 

-!*%E 
“0~~~ 
1 :m2781 
0.134955 

0.160057 

-0.248936 1.000nnn 

for 

c+=o.5 

0 = 0.31541 

Equation (3.4) corresponding to the number N + 1 is an expression of condition (3.3). 

and AN+1 = CO, BNqI = 0. 

Table 1 gives the resulta of the calculations for the stress (I (y) at the clamp for 

various values of the number of collocation points (N = 5, 6, 7) for C = O-5 and cr = 0~31741. 
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Table 1 Table 2 
- 

u fY)hlP 
Y 

N=5 
1 

N==6 
I 

N=l 

- 

Ak c = 0.5 I C=l c=2 

-0.17953 
+0.24741 
+0.64034 
+0.04506 
-i .74094 
+2.21550 
-i .@I300 
+O. 77486 

-0.03621 
+O. 17426 
-0.11729 
-0.01961 
+0.02093 

Z*EE 
+0:79367 

-0.08355 -0.09226 -0.08260 
-0.10045 -0.09938 -0.08862 
-0.12145 -0.12037 -0.12048 
-0.20287 -0.19847 -0.19861 
-0.26920 -0.27203 -0.27055 
-0.03490 -0.00570 -0.00820 
+o. 97350 +0.98192 $0.98662 

-0.09260 
-0.67577 
+O. 36628 

-1 m 67375 
+0.64518 
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It can be seen from these tables that the fifth approximation differs from the sixth by 

2% and the sixth from the seventh by 08%. It was found that the smaller the value of 

C = C, / h, the larger is the number of terms which must be taken in (3.1) to attain the 

same accuracy. 

Table 2 contains values of the coefficients Ah for the seventh approximation and for 

values of C = 0*5. I*0 and 2~0. 

Figure 2 shows graphs of tha variation of the stress at the clamp against C = Cl / h. 

It can be seen that as C + 0 the stresses tend to zero non-uniformly over the thickness 

of the strip and in such a way that they become more and more concentrated in the comer. 

In practice St. Venant’s principle is already applicable for all C = Cr / h > 2 , i.e. 

beyond this limit the conditions of clamping have an insignificant effect on the solution. 
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