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The authors consider the problem of a symmetrically loaded semi-infinite strip clamped
along the short edge. An integral equation is derived for the normal stress at the clamp
and the nature of the singularities of its solution is investigated. A detailed study is made
of the case when normal and tangential forces act on a longitudinal edge. For such loading
the nature of the stress distribution at the clamp is investigated in detail. Numerical
calculations are given for the case when the strip is compressed by two point forces.

In many works dealing with semi-infinite strips, wide use is made of methods based
on the principle of localization. In this way a satisfactory solution is obtained a long way
from singular points such as: 1. points at which the nature of the boundary conditions
changes; 2. points at which the loading becomes discontinuous ; 3. corner points. By these
methods the singularities of the solution which occur in the aforementioned cases and
reduce its accuracy, are excluded from it.

Horvay [1 to 3] has studied the problem of a semi-infinite strip with free longitudinal
edges and with self-equilibrated loads acting at the end. He selects a stress function in
the form

@ (@ y) = 2, Cyly (¥) 8, (2)

where a complete system of orthogonal polynomials is used for f; (y) and the multipliers
gj, (x) are determined from the condition of minimum potential energy.

Koiter and Alblas [4] have studied the problem of the extension of a semi-infinite
strip with free longitudinal edges and with a clamped short edge. By applying a Fourier
sine transformation to the equation for the stress function they, as all subsequent authors,
reduced the solution of the problem approximately to an infinite system of linear algebraic
equations.

In papers by Pickett and Jyengar ({5 and 6] 1956, 1962) the stress functions are sought
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Some problems in the theory of elasticity 129

in the form of combinations of Fourier series and integrals.

Tn 1958 Zorski [7] solved the problem for a plate in the form of a semi-infinite strip.
By seeking a solation in the form of combinations of solutions of two potentials he reduced
the problem to a singular integral equation.

Io a paper by Theocaris ([8], 1959) dealing with the problem of a semi-infinite strip
with free longitudinal edges and with a concentrated force acting on the end, an energy
method was used.

Teodorescu ({9], 1960) suggested the method resembling that of Pickett and Jyengar for
the solntion of the problem of a semi-infinite strip.

A variational method was used by Trapeznikov ([10], 1963) for the solution of the
problem of a semi-infinite strip compressed by two concentrated forces; the short side of
the strip was stress free.

Gaydon and Shepherd ([11], 1964) studied Horvay’s problem by means of the method of
homogeneous solutions. Since the homogeneous solutions were not orthogonal, in order to
satisfy the conditions at the end, they were expanded into series of orthogonal functions.

Homogeneous solutions have also been used by Buchwald ([12], 1964).

All of the aforementioned authors ignored the singularities of the solution and for this
reason the linear systems to which the problem was reduced were often inexact.

The paper by Benthem ([13], 1963), which solves the problem of a semi-infinite strip
as stated by Koiter and Alblas, is free of this shortcoming. By applying Laplace trans-
forms to the equation for the stress function Benthem reduced the problem to a system of
linear algebraic equations. He established the nature of the singularity of the solution on
the basis of corresponding problems for a quarter plane studied earlizr by Williams ([14
and 15}, 1952 and 1956). Computation of the singularity given in the present paper assumes
a form different from that of Benthem [13], with resuliing improvement in the accuracy of the
solution. It should also be noted that the prohiem studied here has not been studied in the
works listed above.

1. Consider the svipetrical problem for a semi-infinite strip with the following bound-
ary conditions (F‘S D:

u‘,z?}:O, 3:::0 (1-1}

Oy =g (2), Ty, =7 (x)sgny, ¥y = +1(.2

Ty=2h 2h Here u and v are the displacements along the axes of
l x, and y, respectively; Tyy,, and Oy, are the tangential
? and normal stresses.
P

In order to derive the integral equation for the problem

FIG. 1. we make use of the fundamental relations of the plane



130 L.L. Vorovich and V.V. Kopasenko

theory of elasticity in terms of displacements
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Here o is Poisson’s ratio and G is the shear modulus. Let the boundary conditions be
given by (1.1) and (1.2) and let us represent u and v as the sum of the solutions of two
auxiliary problems:

(1) The problem for a semi-infinite plane with a boundary along the y-axis and with

the boundary conditions
z=0, 2@ =0, o,@ =0@), |y (1.9)
(2) The problem for a strip with boundary conditions

z=0, v =0, o5 =0 [yI<1 (1.5)
y = £1, oy, = m (2), Tey, = 0 (2) (1.6)

Here m and n are such that for the general problem boundary conditions (1.2) hold. It
is easily seen that the solution of (1) is giver by the formulas

2 g 2 L yg?
u:—(—nz—) —g— coskxdk&g—%)_(%i_—m:’s)cossyds—{—cl (0 = A% 4 %)
(1.7)

0
sin Mzdkg Q(_S)(T\’_%%Egﬂ (Q (s) = S 6 (t) cos st dt>
[ °

o

Here C, is an arbitrary constant.

Solution of (2) is obtained by applying a Fourier sine transformation to the system of
equations (1.3). Without describing the intermediate computations, we state the final

formulas
U= ’:2;_8 (A  cosh Ay + BAy sinh Ay)cosrzdh L C,
0
_ (1.8)
9 ,
» — ?S [A siah Ay + B (Ay cosh Z,y——z—:vsinh xy)}sinxxdx
o

Here A (A) and B (A) are arbitrary functions; C, is an arbitrary constant. From
formulas (1.7) and (1.8) we can easily see that for the problem obtained by superimposing
solutions of (1) and (2) the following boundary conditions hold:

=0, v =0, on=0@) IyI<! 1.9)
y =1, oy, =N (z) + m (2), Te, = M (2) +n(2), >0 (110
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Here N (x) and M (x) are, respectively, the normal and tangential stresses in the
semi-infinite plane at y = 1. In order to satisfy conditions (1.2) we put

mz) =¢@ —N@, n@=r@—M@ (1.1)
Then
gl"Nl sinh 3 My—ry . vt \
A(d)= (7\- cosh } — )-—[— ;VA,r (7» sinh A — - cosh 7\,)
B(A)=— .M%;ZQ cosh A —-—-glﬁjvl sinh A,

+

-

@ @
g = -a-S g(z)sinhzdr, A = sinh 2V +27, 1= —2—5 r (z)cos Az dx
0 ¢

M, = s(tye 2 (v-+1—viB)dt

B=11—1]

G(2+2v)

N, = o (t) e (vAB — 1)t

5,
G(2+2v)S

[}

The solution obtained by superimposing (1) and (2) satisfies all the boundary con-
ditions except u=0at & = &, / B = 0. Instead of this we obtain

, s ¢ R G
lix_o 2::(1_:_\,) S G(t)lnlt-y]dt‘{"m S G(t)K(tr y)dt+

b v}

—-—m (1.12)
2

-+ T S £1(d) [K(cosh)\cosh Kyaysinhhsinh?by)-s.{w]dk_
0

A

z

>

xR
2 .
— .R—S r1£+ [1\, sinh A cosh Ay — y cosh Asinh Ay) — Y ’t ! cosh A °°Sh7"y] dh +
0

v+2
+C“G i)’ lyl<t

K, y)= § ;A+ {?»y sinh Ay [cosh & (1 4 v —VAB) + sinh A (1 —VAB)] —
0

") (1 —¥AB) 4 (v + 1 — vAB) X

X (7\» sinh },_‘v.i_i cosh k)]}d}\- B=11—2))

Here C, is an arbitrary constant which can be determined from the condition of

— ( cosh ky-—i)[(z, cosh A—

equilibrium of the semi-infinite strip.
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If we impose the condition that 4 =0 at x X 0 we obtain an integral equation in terms

of the stress g (y) at the support. Let us put

oy) =a(y) for l¥I<Y, o(y) =0 for lyl>1

After simple manipulations of (1.12) we obtain an integral equation of the form

)

\ o) {rirem o 1t — ¥+ ot I (2 — £ — 3] —

5T+ (i +v)
v fA—0l-—y) , =0+ N\ 5 __
—2(1+v)[ (2—y—t)? + 2+y—p ]}dt
1
. V+2 <1
\ s (O Lt y)dt + Cagrrtes = 1 @), i<t

-1

v v+ 2
Lt y) = 5 (= r=y=1) — mopy Bl — P =21+

xR
(4h—e 2 4 . _
+ +v) So & 1 2me P 1) L{“”h M (vA —1 — vM tanh At) [),y sinh Ay

—2A
~(cosh Ay — 1) (A 2ty 5—2— — cosh At cosh }\c_)\[(cosh Ay - 1} x
y ) 2v 2

X (V41— VA tanh A) + v Ay sinh Ay] }dk

)
fy)=— -g—S £ (: )[7\. (cosh A cosh Ay —~ y sinh A sinh Ay) — —smh A cosh M/] di +
0

4+ _G_S r(h) L}\, (sinh A cosh Ay - y cosh X sinh Ay) — ! cosh A cosh l,y] dh
This way we have reduced the problem to an integral equation of the first kind. The

kernel of this equation has a removable singularity on the diagonal y = ¢ and a fixed

singularity at the points y = * 1. The fixed singularity in the kernel complicates the

investigation of the equation as well as its numerical solution.

2. Let us now investigate the singularity of the solution of the problem under consi-
deration. It can easily be assumed that the nature of this singularity will be the same as
that at the corner in the solution of the analogous problem for a quarter plane. We shall use
the results of Williams {14 and 15], Ufliand [16] and Kurshin ['17]. Later we shall use the
paper by Benthem [13], the essential results of which we shall briefly reproduce.

We shall consider the case of plane strain. Transition to a state of plane stress can be
effected by the usual replacement of Poisson’s ratic o by /(1 + o). We calculate the
singularity not by using the solutions of the corresponding problem for a wedge, but by
starting directly from the boundary~value problem only. In this we shall use a system of

polar co-ordinates o and @. Since near the cornetr G0y = 0, Tos =0 when o =0, we have
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220 d (i&@) -0 9=0
o = O o \p % ' 2.1
Here O is a stress function satisfying the equation
92 1 8 1 1\ /30 1 60 1 820y
Gtewmtamlmtentam =0 o

The boundary conditions along the clamped edge are of the form (the displacements
being zero) 1 §E+L@_J_3“_23 2.3
o op p? 300  {-—o¢ op? )
3 (1 8D\ 1 8 /100 1——6(_1_630 180 ¢ ﬁfb_)zo
bﬁ(?ﬁ}‘*‘?%(?a_e)"*‘ %5 \ 5 00 T ¥ % T—50apia0

Separating the variables in (2.2), we obtain

D =p**'F (5,0), F(s0) =A;sin(s +1)0 +
+A,cos(s +1)8 4+ A;sin (s — 1)0 44, cos (s — 1)

Here A,, Ay, A5, and A4 are arbitrary constants.

By satisfying the four boundary conditions (2.1), (2.2) and (2.3) we obtain a restriction
imposed upon s, namely

2xcos ns — 452 +1 +%%2 =0, % =3 — 4o (2.4

For any values of o within 0 <7 0 < 0.5 , equation (2.4) has a positive root
For o = 0:31741, 5o = 0:70000, and the stress in the corner when p -0 increases like
9793 (0), where P (0) is a bounded function.

3. As a numerical method of solving the integral equation (1.13) we shall use an
analogue of the method of Mul"topp-Kalandiia [18 and
_Q'%Zf 19]. This method was developed in connection with
the approximate solution of the equation of the theory
of a wing of finite span. We shall seek an approxi-
mate solution to the problem in the form

08

T
)
&
P, €

0% N41
I sly)=(1—y*" Y At*D
k=1 {3.1)
i et (59 =0.70000 for &= 0.31741)
a0 s
” m— g (My_% Substituting Expression (3.1) in the integral

equation (1.13) and equating the left- and right-hand
sides at the nodal points ¥}, selected in a definite
manner, we obtain a system of linear algebraic

FIG. 2. equations in a;. As the nodes of collocation we
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selected the roots of the Chebyshev polynomials
Yp=C0s “y— R (k=1,...,¥) (3.2)

Here N is the number of subdivision points in the interval [0, 1]. In this way the
problem has been solved for the case of compression of a semi-infinite strip by two con-
centrated forces P (g, = (P /G) sin ke, rp =0, C3 = Cy (P / k), with the supplementary
condition

1
§ swar=o (3.3)
=1

The integral expressions in (1.13) which contain singular kernels were evaluated by
expressing them in terms of hypergeometric series [20], the other expressions being
evaluated by Simpson’s rule. As a result a linear system of algebraic equations of the
following form was obtained:

N+1
Z 8 A; = By (k=1,...,N+1) (3.4)

1=1

Here N is the number of subdivision points in the interval [0, 1] and Bk are absolute

terms ; the values of the elements of the matrix of coefficients [a/k| are as follows:-

For N=17
3.79797 0.679865 0.133718  —0.069639  —0.166754 —0.219020 —0.248936 1.000000
3.84433 0.845496 0.340080 0.159890 0.077913 0.036060 0.013403 1.000009
3.93114 1.133348 0875770 0.503745 0.425283  0.374819  0.340033 1.000000
4 04211 1.493278 1.045873 0.849866 0.730660  0.646622  0.582733 1.000000
15334 1.860771 1.850040 1.102649 0.935391  0.818815  0.731779 1.000000
6 2“67 2.162253 1.564801 1.250573 1.054180 0.918675 0.818839 1.000000
§.20476 2332245 1.660292 1.319084 1.109272  0.985474  0.859885 1.000000
1.00000 0.416667 0.284091 0.221946 0.184955  0.160057  0.141986 0.000000
For N=g¢
3.800071  0.887903 0.144033  —0.0579843  —0.154076 —0.205535  1.000000
3 861710  0,907760 0.415292 0.240943 0.464525  0.120365  1.000000
9756786 1277011 0.831596 0.658257 0.563429  0.500690  1.000000
A 108963  1.711400 1.239934 1.009266 0.862153  0.757591  1.000000
4.225268  2.096080 1.524200 1.221575 1.031080  0.899142  1.000000
41202418 2.394274 1.856142 1.316071 1.108832  0.963398  1.000000
1.000000  0.416667 0.284094 0.221946 0184055 0.1600% 0.000000
For N=5
38035t 0 701084 0.160750  —0.03905¢  —0.133544  1.000000
3.802630  1.008647  0.531682  0.363208 0.234434  1.000000 for
4.062105 g -493278 1.045873 0.849866 0.730680  1.000000 c=51 05
4.49428%  1.998357 1.455256 1.171876 0.991675  1.000000 =% =
4.288577  2.311127 1.849231 1.311061 1.102781  1.000000 o == 089744
1.000000  0.416867 0.284091 0.2210468 0.184955  0.000000 =l

Equation (3.4) corresponding to the number N + 1 is an expression of condition (3.3),
and Ay,, = Co, By, = 0.

Table 1 gives the results of the calculations for the stress o (y) at the clamp for
various values of the number of collocation points (N =5, 6, 7) for C = 0.5 and g = 0:31741.
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Table 1 Table 2
’ o (WP Axl c=o0s5 c=1 ’ c=2
N=5 N=6 N=7

Ay | —0.09260 | —~0.17953 —0.03621
0 —0.09355 | —0.09226 |—0.09260 Ay | —0.67577 +0.24741 -+0.17426
0.1 | —0.10045 | —0.099381—0.09962 As | +0.36628 | 4-0.64034 —0.11729
0.2 | —0.12145 | —0.12037 |—0.12048 A4 -+0.31330 | 4-0.04506 —0.01961
0.4 | —0.20207 | —0.19847 [—0.19861 A5 | -+2.47072 | —1.74094 -+0.02093
0.6 | —0.26920 | —0.27203|—0.27055 As| —0.11710 | 1+2.21550 —0.00727
0.8 | —0.03490 | —0.00570|—0.00820 A,| —1.67375 | —1.04300 —0.01006
0.95| 40.97350 | 4-0.98192|40.98662 C, | -+-0.64518 | +0.77438 | -0.79367

It can be seen from these tables that the fifth approximation differs from the sixth by
2% and the sixth from the seventh by 0:8%. It was found that the smaller the value of
C = C, / h, the larger is the number of terms which must be taken in (3.1) to attain the
same accuracy.

Table 2 contains values of the coefficients 4, for the seventh approximation and for
values of C = 0:5, 10 and 2:0.

Figure 2 shows graphs of the variation of the stress at the clamp against C = C, / A,

It can be seen that as C + 0 the stresses tend to zero non-uniformly over the thickness
of the strip and in such a way that they become more and more concentrated in the corner.

In practice St. Venant’s principle is already applicable forall C =C,/h > 2, i.e.
beyond this limit the conditions of clamping have an insignificant effect on the solution.
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